24 research outputs found

    Listening to the World Improves Speech Command Recognition

    Full text link
    We study transfer learning in convolutional network architectures applied to the task of recognizing audio, such as environmental sound events and speech commands. Our key finding is that not only is it possible to transfer representations from an unrelated task like environmental sound classification to a voice-focused task like speech command recognition, but also that doing so improves accuracies significantly. We also investigate the effect of increased model capacity for transfer learning audio, by first validating known results from the field of Computer Vision of achieving better accuracies with increasingly deeper networks on two audio datasets: UrbanSound8k and the newly released Google Speech Commands dataset. Then we propose a simple multiscale input representation using dilated convolutions and show that it is able to aggregate larger contexts and increase classification performance. Further, the models trained using a combination of transfer learning and multiscale input representations need only 40% of the training data to achieve similar accuracies as a freshly trained model with 100% of the training data. Finally, we demonstrate a positive interaction effect for the multiscale input and transfer learning, making a case for the joint application of the two techniques.Comment: 8 page

    Learning Interpretable Style Embeddings via Prompting LLMs

    Full text link
    Style representation learning builds content-independent representations of author style in text. Stylometry, the analysis of style in text, is often performed by expert forensic linguists and no large dataset of stylometric annotations exists for training. Current style representation learning uses neural methods to disentangle style from content to create style vectors, however, these approaches result in uninterpretable representations, complicating their usage in downstream applications like authorship attribution where auditing and explainability is critical. In this work, we use prompting to perform stylometry on a large number of texts to create a synthetic dataset and train human-interpretable style representations we call LISA embeddings. We release our synthetic stylometry dataset and our interpretable style models as resources

    Open Knowledge Enrichment for Long-tail Entities

    Full text link
    Knowledge bases (KBs) have gradually become a valuable asset for many AI applications. While many current KBs are quite large, they are widely acknowledged as incomplete, especially lacking facts of long-tail entities, e.g., less famous persons. Existing approaches enrich KBs mainly on completing missing links or filling missing values. However, they only tackle a part of the enrichment problem and lack specific considerations regarding long-tail entities. In this paper, we propose a full-fledged approach to knowledge enrichment, which predicts missing properties and infers true facts of long-tail entities from the open Web. Prior knowledge from popular entities is leveraged to improve every enrichment step. Our experiments on the synthetic and real-world datasets and comparison with related work demonstrate the feasibility and superiority of the approach.Comment: Accepted by the 29th International World Wide Web Conference (WWW 2020

    Ranking and semi-supervised classification on large scale graphs using map-reduce

    No full text
    Label Propagation, a standard algorithm for semi-supervised classification, suffers from scalability issues involving memory and computation when used with largescale graphs from real-world datasets. In this paper we approach Label Propagation as solution to a system of linear equations which can be implemented as a scalable parallel algorithm using the map-reduce framework. In addition to semi-supervised classification, this approach to Label Propagation allows us to adapt the algorithm to make it usable for ranking on graphs and derive the theoretical connection between Label Propagation and PageRank. We provide empirical evidence to that effect using two natural language tasks – lexical relatedness and polarity induction. The version of the Label Propagation algorithm presented here scales linearly in the size of the data with a constant main memory requirement, in contrast to the quadratic cost of both in traditional approaches.

    Learning Efficient Representations for Fake Speech Detection

    No full text
    Synthetic speech or “fake speech” which matches personal vocal traits has become better and cheaper due to advances in deep learning-based speech synthesis and voice conversion approaches. This increased accessibility of synthetic speech systems and the growing misuse of them highlights the critical need to build countermeasures. Furthermore, new synthesis models evolve all the time and the efficacy of previously trained detection models on these unseen attack vectors is poor. In this paper, we focus on: 1) How can we build highly accurate, yet parameter and sample-efficient models for fake speech detection? 2) How can we rapidly adapt detection models to new sources of fake speech? We present four parameter-efficient convolutional architectures for fake speech detection with best detection F1 scores of around 97 points on a large dataset of fake and bonafide speech. We show how the fake speech detection task naturally lends itself to a novel multi-task problem further improving F1 scores for a mere 0.5% increase in model parameters. Our multi-task setting also helps in data-sparse situations, commonplace in adversarial settings. We investigate an alternative approach to the data-sparsity problem using transfer learning and show that it is possible to meet purely supervised detection performance for unseen attack vectors with as little as 6.25% of the training data. This is the first known application of transfer learning in adversarial settings for speech. Finally, we show how well our transfer learning approach adapts in an instance-efficient way to new attack vectors using the Real-Time Voice Cloning toolkit. We exceed the purely supervised detection performance (99.18 F1) with as little as 6.25% of the data
    corecore